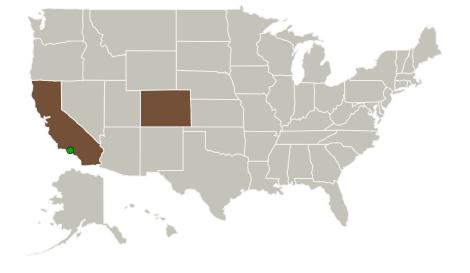
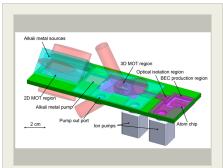
High-Flux Ultracold-Atom Chip Interferometers, Phase II




Completed Technology Project (2014 - 2017)

Project Introduction

ColdQuanta's ultimate objective is to produce a compact, turnkey, ultracoldatom system specifically designed for performing interferometry with Bose-Einstein condensates. In Phase II, we propose to develop an ultracold-atom system based on ColdQuanta's channel cell technology. With this approach to ultrahigh-vacuum systems, we can design and fabricate cells that are far smaller and more robust than any other vacuum technology used with ultracold atoms (of which we are aware). With a channel cell, each stage of BEC production can occur simultaneously throughout a series of interconnected vacuum chambers. The resulting system creates ultracold atoms quasi-continuously and increases production rates by virtually eliminating dead time between sequential operating cycles. Part of the channel cell's small size is due to an integrated atom microchip that can be used to quickly produce ultracold atoms and utilize them for a variety of applications. With the flexibility afforded by atom chips, channel cells can be easily configured for a variety of interferometer geometries, including a Michelson configuration for measuring accelerations and a Sagnac configuration for measuring rotations.

Primary U.S. Work Locations and Key Partners

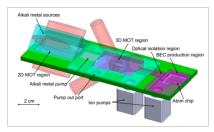
High-Flux Ultracold-Atom Chip Interferometers, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High-Flux Ultracold-Atom Chip Interferometers, Phase II



Completed Technology Project (2014 - 2017)

Organizations Performing Work	Role	Туре	Location
ColdQuanta, Inc.	Lead Organization	Industry	Boulder, Colorado
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations	
California	Colorado

Images

Briefing Chart Image

High-Flux Ultracold-Atom Chip Interferometers, Phase II (https://techport.nasa.gov/imag e/126241)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ColdQuanta, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

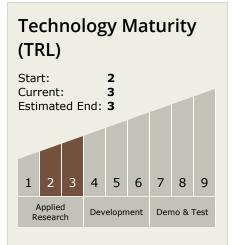
Carlos Torrez

Principal Investigator:

Daniel M Farkas

Co-Investigator:

Daniel Farkas



Small Business Innovation Research/Small Business Tech Transfer

High-Flux Ultracold-Atom Chip Interferometers, Phase II

Completed Technology Project (2014 - 2017)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - ☐ TX08.1.1 Detectors and Focal Planes

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

